
Cf\eS%fOf 2000

APPLICATION OF ARTIFICIAL NEURAL NETWORKS IN THE
DESIGN OF CONTROL

SYSTEMS*

Hong Helena Mu Y. P. Kakad B. G. Sherlock

Department of Electrical and Computer Engineering
University of North Carolina at Charlotte

9201 University City Blvd, Charlotte, NC 28223, USA

ABSTRACT

The paper develops important fundamental steps in applying artficial neural networks in
the design of intelligent control systems. Different architectures including single layered
and multi layered of neural networks are examined for controls applications. The
importance of different learning algorithms for both linear and nonlinear neural networks
is discussed. The problem of generalization of the neural networks in control systems
together with some possible solutions are also included.

INTRODUCTION

In recent years, the field of intelligent controls has become increasingly important due to the
immense development in computing speed, power, and affordability. Neural network based
control system design has become an important aspect of intelligent control since it is
effective when mathematical models are inaccurate or not available. The method provides a
distinctive computational paradigm to learn (or to adapt) linear or nonlinear mappings from
a priori data and knowledge without fully understanding the physical behavior of the system.
Thus the method does not rely on models based on traditional analytic differential equations
and since the models are developed using computers, the control design produces
controllers, that can be implemented online.
The paper examines both the nonlinear multi-layer feed-forward architecture and the linear
single-layer architecture of Artificial Neural Networks for application in control system
design. In the nonlinear multi-layer feed-forward case, the two major problems are the long
training process and the poor generalization. To overcome these problems, a number of data
analysis strategies before training and several improvement generalization techniques are
used. Basically, neural design entails constructing a controller not only to meet the
performance objectives like rise time, overshoot, settling time, and state error, but also to
satisfy neural network standards such as a low number of local minima, higher learning
speed, and better generalization capability under stable conditions.

ARCHITECTURES IN NEURAL NETWORKS

One of the major tasks in the design of a neural network is the selection of architecture and
this choice depends on the nature of the problem. Inappropriate choice results into poor

This work was supported in part by Office of Naval Research grant number N00014-99-1-0091

DISTRIBUTION STATEMENT A 1
ApSÄSr '»»•»»»—»00001124 157

performance. The following are the commonly used neural network architectures for control
system applications:
(a) ADALINE Architecture (ADAptive LINear Element): This architecture [1] is a
single layer with linear output. It is the simplest intelligent self-learning system that can
adapt itself to achieve a given modeling task. Figure 1 is a schematic diagram for such a
network. Inputs connect directly to the outputs through a single layer of weights. It has a
purely linear output unit; hence the network output v is a weighted linear combination of the
inputs plus a constant term b0 , i.e.

n

y = ^wixi+b0 (1)

ADALINE is simple in structure, therefore inexpensive. It can classify only data sets that are
linearly separable. Equation (1) classifies an exact linear model with n + 1 linear parameters,
so we can employ least squares methods to minimize the error. However, most least-squares
methods require extensive calculation, which is not possible in a physical system with
simple components. Various methods [2] have been developed to reduce calculation and
speed up convergence, and these are discussed in the next section.
(b) Feed-forward Neural Network Architecture: This architecture is the most popular
structure in practice due to its non-parametric, non-linear mapping between input and
output. Networks with this architecture are known as universal approximators, including
multilayer feed-forward neural networks employing sigmoidal hidden unit activations.
These networks can approximate not only an unknown function but also its derivative [3].
The Feed-forward neural networks include one or more layers of hidden units between the
input and output layers. As its name suggests, the output of each node propagates from the
input to the output side. All connections point from input towards output. See figure 2.
Multiple layers of neurons with nonlinear activation functions allow this type of neural
network to learn nonlinear and linear relationships between input and output vectors. Each
input has an appropriate weighting W. The sum of the weighted inputs and the bias B
forms the input to the transfer function. Any differentiable activation function / may be
used to generate the outputs. Three of the most commonly used activation functions are

purelin f(x) = x, log-sigmoid f(x) = (l + e~x)', and tan-sigmoid

/(*) = tanh(jc/2) = (l-0/(l + 0 .
Both the hyperbolic" tangent (Tan-sigmoid) and logistic (Log-sigmoid) functions
approximate the signum and step functions, respectively, and yet provide smooth, nonzero
derivatives with respect to the input signals. These two activation functions called squashing
functions since their outputs are squashed to the range [0, 1] or [-1,1]. They are also called
sigmoidal functions because their S-shaped curves exhibit smoothness and asymptotic
properties.
The activation function fh of the hidden units have to be differentiable nonlinear functions

[typically, /Ais the logistic function or hyperbolic tangent function fh (net) = tanh (net)]. If

fh is linear, then one can always collapse the net to a single layer and thus lose the universal

approximation/mapping capabilities. Each unit of the output layer is assumed to have the
same activation function.

The node function for the output layer is a weighted sum with no squashing functions. This
is equivalent to a situation in which the activation function is a purelin function, and output
nodes of this type are often called linear nodes.

LEARNING ALGORITHM

In this section, a number of basic concepts necessary in the development of learning
algorithms are presented and many of these algorithms are gradient-based. Learning in a
neural network is normally accomplished through an adaptive procedure, known as a
learning rule, whereby the weights of the network are incrementally adjusted so as to
improve a predefined performance measure over time (figure 4). In other words, the process
of learning is best viewed as an optimization process. More precisely, the learning process
can be viewed as a "search" in a multidimensional parameter (weight) space for a solution,
which gradually optimizes an objective (cost) function.

Gradient Based Methods

Gradient based method searches for minima by comparing values of the objective function
E{6) at different points. The basic idea is to evaluate the function at points around the
current search point and then look for lower values. In other words, the primary concern is
to minimize the objective function E{6) in the adjustable space 6 = \dl92,....,6n\ and to find

a minimum point 6 = 6*. In general, a given function E depends on an adjustable parameter
6 with a nonlinear objective function. E(8) = f(Ol62,....,0n) is so complex that an iterative
algorithm is often used to search the adjustable parameter space efficiently. In iterative
descent methods, the next point 0new is determined by a step down from the current point

6now in a direction vector d given as:

0nex,=enoW+nd (2)
where r\ is some positive step size commonly referred to as the learning rate.
The principal differences between various descent algorithms lie in the first procedure for
determining successive directions. Once the decision is reached, all algorithms call for
movement to a (local) minimum point on the line determined by the current point Gnow and

the direction d . That is, for the second procedure, the optimum step size can be determined
by linear minimization [4] as:

rf = arg(min(^(^)) (3)
77 > 0

where
m = E(enew+7jd). (4)

When the straight downhill direction d is determined on the basis of the gradient (g) of an
objective function E, such descent methods are called gradient based descent methods [4].
Gradient based descent method is not highly regarded among the optimization methods
mainly because of its slow rate of convergence. The gradient never points to the global
minimum except in the case where the error contours are spherical so many small steps are
needed to arrive at the minimum.

Some common gradient methods are: steepest descent, Newton's method, Gauss-Newton
method, and Levenberg-Marquardt method. The latter method has proven useful in the
design of control systems and we adopt it here.

Levenberg-Marquardt Method

The Levenberg-Marquardt algorithm can handle ill-conditioned matrices well, like non-
quadratic objective functions. Also, if the Hessian matrix is not positive definite, the Newton
direction may point towards a local maximum, or a saddle point. The Hessian can be
changed by adding a positive definite matrix Al to H in order to make H positive definite.
Thus,

enexl=enow-{H+M)-l
g, (5)

where I is the identity matrix and H is the Hessian matrix which is given in terms of
Jacobian matrix J as H = fj. Levenberg-Marquardt is the modification of the Gauss-
Newton algorithm as

6 = 6 -[jTj)~lJTr=0 -(jTJ + AlYjTr. (6) next now \ / now y * • '* j " \ /

The Levenberg-Marquardt algorithm performs initially small, but robust steps along the
steepest descent direction, and switches to more efficient quadratic Gauss-Newton steps as
the minimum is approached. This method combines the speed of Gauss-Newton with the
everywhere-convergence of gradient descent, and appears to be fastest for training
moderate-sized feedforward neural networks [3].

Forward-Propagation and Back-propagation

During training, a forward pass takes place. The network computes an output based on its
current inputs. Each node i computes a weighted sum at of its inputs and passes this through

a nonlinearity to obtain the node output y(. (fig.no. 3). The error between actual and desired

network outputs is given by

E = ^l{dpi-yJ (7)
1 P i

where p indexes the patterns in the training set, i indexes the output nodes, and dpi and

y . are, respectively, the desired target and actual network output for the ith output node on

the p th pattern.
The back-propagation algorithm is widely used used for training multi-layer neural
networks, and is developed analytically here. The derivative of the error with respect to the
weights is the sum of the individual pattern errors and is given as

(8)

where the index k represents all output nodes. It is convenient to first calculate a value
St for each node i as

<5(=i = Ä (9)
dat k dyk dat

BE

dWy -zf- _ y dEp dak

which measures the contribution of ai to the error on the current pattern. For simplicity,

pattern indexes p are omitted on y(, at and other variables in the subsequent equations.

For output nodes, dEp I dak, is obtained directly as

& = -{d
Pk - yPk)f' (for outPut node)- (10)

The first term in this equation is obtained from error equation, and the second term which is

f\ak) = fk (11) fyk

dak

is just the slope of the node nonlinearity at its current value. For hidden nodes, 5t is

obtained indirectly as

a^ = ya£L3flL = ysJftL (i2)
dat k dak dat k daj

where the second factor is obtained by noting that if the node i connects directly to node k
then dak /dai = f-wki, otherwise it is zero. Thus,

Ar

for hidden nodes.
In other words, S{ is a weighted sum of the Sk values of nodes k to which it has

connections wki. The way the nodes are indexed, all delta values can be updated through the
nodes in the reverse order. In layered networks, all delta values are first evaluated at the
output nodes based on the current pattern errors, the hidden layer is then evaluated based on
the output delta values, and so on backwards to the input layer.
Having obtained the node deltas, it is an easy step to find the partial derivatives dEp jdwtj

with respect to the weights. The second factor in (8) is dak/dwij because a^is a linear sum,

this is zero if k * i; otherwise
da.

X: (14)
Mj J

The derivative of pattern error Ep with respect to weight wi} is then

dE
= £*,.. (15)

First the derivatives of the network training error with respect to the weights are calculated.
Then, a training algorithm is performed. This procedure is called back-propagation since the
error signals are obtained sequentially from the output layer back to the input layer.

Weight Update Algorithm

The reason for updating the weights is to decrease the error. The weight update relationship
is

dE
AWij = v auf"= v{dpi ~ypi)fi Xj (16)

where the learning rate 77 > 0 is a small positive constant. Sometimes 77 is also called the

step size parameter.

The Delta Rule is a weight update algorithm in the training of neural networks. The
algorithm progresses sequentially layer by layer, updating weights as it goes. The update
equation is provided by the gradient descent method as

-77-r-^ (17) VW(, = wij(k-i ■l)-w0«

aw,.,. ■=-k-)dyPi

for linear output unit where

yr, = 'Lwax,

and

dypi

dw.
ij

(18)

(19)

a --< (2°)

SO,

Vw, = w, (k +1) - Wij (k) = ?](dpi - ypi K (21)

The adaptation of those weights which connect the input units and the ith output unit is

determined by the corresponding error e{ = \^[dpi - ypi f .
p

Training Data Analysis

A common complaint about back-propagation is the long training time. A typical training
session may require thousands of iterations. Large networks with large training sets might
take days or weeks to be trained. Two training data analysis methods, namely (1)
normalizing training set and initializing weights, and (2) Principal Components Analysis
(PCA) are intended to speed up the learning process.
The first method speeds up the training by choosing better solutions, by controlling the
distribution of random initial weights and by avoiding sigmoid saturation problems that
cause slow training.
The Principal Components Analysis (PCA) method can reduce the dimensionality of
training data presented to a neural network without losing necessary information. It can
speed up training significantly. One basis for selecting an initial weight distribution is to
assume that the inputs have some statistical distribution and select the initial weight
distribution so that the probability of saturating the node nonlinearity is small. Finding the
optimal architecture of the neural network is as important as selecting an efficient learning
algorithm. The total number of nodes also influences training speed. For a very large set of
input variables with insufficient information, the network may not be able to estimate the
relation very accurately. Using Principal Components Analysis (PCA) to analyze the data
before applying to a neural network will help to overcome the above listed disadvantages.
PCA is a statistical technique that transforms a large set of correlated variables into a smaller
set of uncorrelated variables containing most of the original information. It can be
effectively used as part of the neural network training procedure.

Improving Generalization

The critical issue in developing a neural network is its potential for generalization. A
network may be insufficiently complex and fail to fully detect the signal, leading to
underfitting. A network that is too complex may fit the noise as well as the signal, leading to
overfitting. Overfitting is especially dangerous because it can lead to predictions beyond the
range of the training data. Overfitting can produce wild predictions even with noise-free
data. Underfitting produces excessive bias in the outputs, whereas overfitting produces
excessive variance. Overfitting can be remedied by using extra training data. When the
amount of training data is fixed, three approaches to avoiding underfitting and overfitting,
thereby getting good generalization, may be used: (1) Selection of the model so that the size
of weights as well as the numbers of weights, hidden units and layers, are appropriate to the
number of training cases; (2) adding small amounts of jitter (noise) to inputs during training
to increase the effective number of training cases used; (3) performing cross-validation
checks during training to determine when to stop.

CONCLUSION

The fundamentals of neural network based control system design are developed in this paper
and are applied to intelligent control of the advanced flight propulsion control coupling
(FPCC) aircraft. The results and applicability to the linearized lateral dynamics of the
aircraft will be presented at the conference.

REFERENCES

1. S.I. Amari, N. Murata, K.R. Muller, M. Fincke, H.H. Yang (1997), "Asymptotic
Statistical Theory of Overtraining and Cross-Validation", IEEE Trans. Neural Networks,
8(5), 985-993.

2. C.H. Dagli, M.Akay, O. Ersoy, B.R. Fernandez, A. Smith (1997), "Intelligent
Engineering Systems Through Artificial Neural Networks", Vol. 7 of Neural Networks
Fuzzy Logic Data Mining Evolutionary Programming.

3. H. Demuth and M. Beale (1997), Neural Networks Toolbox Users Guide , Mathworks.
4. L. Fu, Neural Networks in Computer Intelligence (1994), Prentice Hall.
5. M.T. Hagan, and M.B. Menhaj (1994), "Training Feedforward Networks with the

Marquardt Algorithm", IEEE Trans. Neural Networks, 5(6), 989-993.

input ■'' Hidden layer output Layer

\ ?'
Z| /

y

/
~7^

-7
Z.

Figure 1. ADALINE Architecture

Training Date

Input D«»lr»<l output

Training Algorithm
(opttmiratkm nwttwd) s

Figure 4. Learning process

input Layer of Neurons

n y

b,
\ n 2 s y 2

y

~p^

y==£yV*X+b

Figure 2. Feedforward neural network.

y-logsig;^)

log-sigmoid Transfer
Function

+1

-1

ytansig(^i

tan-sigmoid Transfer
Function

linear Transfer
Function

Figure 3. Three types of activation function

